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LE'ITER TO THE EDITOR 

A Fokker-Planck equation for the fluctuations of the heat 
flux 

J M Rubi and D Jou 
Departamento de Termologia, Universidad Aut6noma de Barcelona, Bellaterra, 
Barcelona, Spain 

Received 28 April 1980 

Abstract. The problem of heat fluctuations around the steady state is considered in the 
framework of extended irreversible thermodynamics. A new version using a Fokker- 
Planck description is carried out. Averages for the fluctuations around the steady state and 
correlation functions for these fluctuations are calculated. 

Heat fluctuations around the steady state have been treated by Landau and Lifshitz 
(1971) and Fox and Uhlenbeck (1970), making use of the Onsager and Machlup (1953) 
ideas. In a previous paper Jou and Rubi (1979) have carried out a study of this problem 
when effects due to the introduction of a relaxation time for the propagation of thermal 
signals are considered. Extended irreversible thermodynamics (Muller 1967, 
Lambermont and Lebon 1973, Lebon et a1 1979) was used in order to introduce such 
effects in a thermodynamical scheme. Like some other authors (Keizer 1976), we 
employed the Einstein formula for the probability of a fluctuation, and in this way it was 
possible to calculate the correlation function for the fluctuations of the heat flux. A 
generalisation to thermoviscous fluids has been carried out by Jou et a1 (1980) and 
another to electrical conductors by Jou and Llebot (1980). Also, the previous results 
have been corroborated in the framework of the Onsager-Machlup function (Jou and 
Casas-Viizquez 1980). 

The purpose of this Letter is to describe the fluctuations around the steady state by 
means of the Fokker-Planck formalism. Such a formalism has recently been utilised by 
Enz (1978) in order to describe Navier-Stokes fluids. 

To study isotropic rigid heat conductors without the local equilibrium hypothesis, 
we can use a generalised Gibbs equation of the form 

ds = T-' du + T-'vaq. dq (1) 
which introduces the heat flux q as a new independent variable. In (1) s, U and v are 
respectively the specific entropy, the specific internal energy and the specific volume, T 
is the absolute temperature and a a parameter given through the expression 

( & / d q ) ,  = T-'vaq. (2) 
From (1) it is possible to obtain a generalised constitutive equation for the heat flux in 
the form (Lambermont and Lebon 1973) 

4 =  - 7 - ' ( q + h V T )  (3) 

0305-4470/80/060175 + 03$01.50 @ 1980 The Institute of Physics L175 



L176 letter to the Editor 

where A is the thermal conductivity, T a relaxation time equal to - aA T and an upper 
dot stands for substantial derivation. In the limit when r + 0, one recovers the classical 
expression q = -AV T. 

In order to take into account the effects of the remaining faster variables on the 
evolution of the heat flux, we have generalised (3) (Jou and Rubi 1979) by including a 
Gaussian stochastic noise f .  In this way the fluctuations around an equilibrium state can 
be described by means of the classical Langevin equation 

@ = -T-’p + f (4) 
where p = q - qs, qs  being the heat flux at the steady state. Moreover, the stochastic 
term f satisfies a fluctuation-dissipation theorem 

( f, ( t )  f;. ( t  + t’)) = 2kA T 2 ~ - ’ 6  (t’)&, ( 5 )  

where k is the Boltzmann constant. 
Sometimes, we can solve Langevin equations by converting them into Fokker- 

Planck equations and in this way calculate the averages by means of a probability 
distribution. Equation (4) is equivalent to the Fokker-Planck equation (Haken 1978) 

f = d(r-’pf)/dp + (Q/2)  d2f/dp2 (6) 

where for simplicity we have taken into account unidimensional heat propagation and 
Q is the diffusion coefficient, which in our case is 

Q = 2kAT2r-’. (7) 
Time-dependent solutions of the Fokker-Planck equation can be obtained by means of 
different techniques, for instance bypath integrals (Haken 1976). In our case (6) admits 
a trivial solution 

f(p, t )  = exp(-p’/a + ~ / a )  (8) 
where N ( t )  is a time-dependent normalisation factor and a and b time-dependent 
functions which are given by 

a ( t )  = 2kA T2r-’( 1 - exp( - 2 t/ r )  + a. exp( - 2 f/ T ) ) ,  

b( t )  = bo exp( - t / r ) ,  ~ ( t )  = (mz)-1’2 exp(-b2/a), (9) 

where a.  = a(0) and bo = b(0). From (8) and (9), the average for the fluctuations around 
the steady state exhibits a relaxative behaviour and reads 

( p ( t ) >  = bo exP(- t / r ) ,  (10) 
which in the limit T + 0 (classical case) vanishes. In the same way, one can calculate the 
two-time correlation function 

( p ( O ) p ( t ) )  = kAT2T-’ exp(-t/r), (11) 
which coincides with our previous result (Jou and Rubi 1979). 

Since the deterministic term in the Langevin equation (4) is linear, the Fokker- 
Planck equation admits a trivial solution and in this way averages of heat fluctuation can 
be calculated. Such an equation is of great value in the computation of time correlation 
functions without using a complete molecular description and, therefore, in the 
treatment of heat conducting processes, we hope that it may be able to be used to apply 
the linear response theories of Kubo and Mori (Zwanzig 1973) to such systems. 
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